Latent class based multiple imputation approach for missing categorical data
نویسندگان
چکیده
منابع مشابه
A nonparametric multiple imputation approach for missing categorical data
BACKGROUND Incomplete categorical variables with more than two categories are common in public health data. However, most of the existing missing-data methods do not use the information from nonresponse (missingness) probabilities. METHODS We propose a nearest-neighbour multiple imputation approach to impute a missing at random categorical outcome and to estimate the proportion of each catego...
متن کاملMultiple Imputation for Missing Data
Multiple imputation provides a useful strategy for dealing with data sets with missing values. Instead of filling in a single value for each missing value, Rubin’s (1987) multiple imputation procedure replaces each missing value with a set of plausible values that represent the uncertainty about the right value to impute. These multiply imputed data sets are then analyzed by using standard proc...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملMultiple imputation for model checking: completed-data plots with missing and latent data.
In problems with missing or latent data, a standard approach is to first impute the unobserved data, then perform all statistical analyses on the completed dataset--corresponding to the observed data and imputed unobserved data--using standard procedures for complete-data inference. Here, we extend this approach to model checking by demonstrating the advantages of the use of completed-data mode...
متن کاملMultiple imputation: dealing with missing data.
In many fields, including the field of nephrology, missing data are unfortunately an unavoidable problem in clinical/epidemiological research. The most common methods for dealing with missing data are complete case analysis-excluding patients with missing data--mean substitution--replacing missing values of a variable with the average of known values for that variable-and last observation carri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Planning and Inference
سال: 2010
ISSN: 0378-3758
DOI: 10.1016/j.jspi.2010.04.020